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INTRODUCTION

In this second semiannual report we describe work in three areas.

Part A describes our work on packet radio networks. This section

extends our work to include the effect of imperfectly heard acknowledg-

ments. It describes and analyzes a new protocol that reduces this

effect. The effect of the increase in overhead is also presented.

In Part B we describe our work on new switching techniques.

Here we prove and develop an optimum packetization strategy for a

particular class of users.

In Part C we discuss our work on probabilistic analysis of algor-

ithms. In this work we analyze a particular algorithm, and discuss its

probabilistic performance. Simulation results are also presented.

The Appendix contains the manuscript of a paper on an algorithm

* for the knapsack problem. It is being submitted for publication. -

- - -



B 0

RESEARCH SUMMARIES

S

*

p

*

5-



A. PACKET RADIO NETWORKS

Our activities in this area focused on developing and analyzing a S

new protocol for hop-by-hop acknowledgments in multihop packet radio

networks. Our objective was to overcome the major disadvantages of

the passive acknowledgment scheme previously in use. In particular,

we sought to improve throughout and reduce delay relative to that

scheme.

We developed and analyzed a new acknowledgment protocol which

we refer to as the virtual acknowledgment protocol. In this protocol, if

node j hears a packet transmitted to it by node i, node j includes the

identifier of this packet in the next m packets it transmits to any node

(in addition, of course, to later transmitting the packet itself). We

refer to this as m virtual transmissions (and one actual transmission) of

the packet. Node i then has m opportunities, rather than one, to hear

that node j received its packet. Thus the probability of an acknowl-

edgment being heard is greatly increased over what it was with passive

acknowledgments. This increases throughput significantly, roughly 50%

for the topologies we have studied.

In addition to this, node i can make the determination as to whe-

ther or not to transmit as soon as it hears any packet transmitted by

node j. Thus, node i does not have to wait for its packet to be sched-

uled for retransmission and retransmitted by node j. This reduces

delay significantly. 0

We present the analysis of throughput and overhead due to the

increased length of the header and give a general procedure for com-

puting these quantities. We also present analyses of several specific .-

topologies of interest and compare the performance of this protocol with

that of passive acknowledgments for these topologies.

* -1-



A.1. A NEW PROTOCOL FOR PASSIVE ACKNOWLEDMENTS

In the previous report we discussed the effect of imperfect ac-

knowledgment on the maximum obtainable throughput for various top-

ologies. We saw that the maximum obtainable throughput was reduced

more than 30 percent for a chain, and more than 44 percent for the star

network. The protocol that we used has the following disadvantages:

1. Each node has only one chance to hear acknowledgments
from its neighbors.

2. Since the probability of a node hearing an acknowledg-
ment from its neighbors is significantly less than one,
some of the successful transmissions are duplicate trans-
missions.

3. The next node must recognize the duplicate transmission, -,

otherwise the actual throughput will go to zero when the
number of hops between source and destination nodes is
large.

4. Since each node must wait until transmission of the
packet by its neighbor to hear acknowledgments for that .
packet, the timeout period is large. Thus delay will be
large too.

The protocol that we have developed to overcome these problems is

that a node recognizes a passive acknowledgment for its packet by the

virtual transmission of that packet. A packet is virtually transmitted if

its identifier is transmitted with another packet. Each node when

transmitting a packet includes not only the packet's identifier but also

the identifiers of previously received packets. A packet's identifier is

contained in the next m packets. A node would then have m oppor- 0

tunities to hear if its transmission was received (we do not count the

actual transmission). If a packet's identifier is transmitted m times

then the acknowledgment for that packet is almost always heard for a

-2-



sufficiently large value of m. If a packet's transmission is not re-

ceived, then after a timeout period that packet is rescheduled for

transmission. A node can recognize the success of its transmissions

without waiting very long if each node uses a FIFO (a first in first

out) discipline for the virtual transmissions. Suppose that a node

hears an acknowledgment for packet B, which is transmitted after

packet A, but still has not heard a virtual transmission of A, then the

node recognizes that packet A was not received, and it reschedules

packet A for retransmission.

A.2. The Effects of the New Protocol on Throughput

Inserting n identifiers into a packet will increase a packet length

by a factor (see Fig. A.1)

h + d + (n+l) b (A-i

h + d +b

The value of n is related to m as will be shown later. Here n is the

number of different identifiers added to the packet. For the moment,

we will assume that the average value of n equals m.
The value of m is chosen such that the probability of hearing an

acknowledgment, qij, is close to one. Since every node hears acknowl-

edgments from its neighbors with probability close to one there are

almost no duplicate transmissions. Thus nodes do not have to recognize

duplicate transmissions for the sake of throughput.

If each node virtually transmits a packet m times then the proba-

bility of successfully hearing an acknowledgment can be recomputed as

follows:

-9 -3-
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h bits b bits d bits

Header ID Data

1 2 (n+1) "

Header __IDI ID " ID Data

h bits (n+l)b bits d bits

FIGURE A.1. PACKET FORMATS FOR THE OLD AND NEW PROTOCOLS

qij is the probability of hearing an acknowledgment. Then the

probability of not hearing an acknowledgment after m virtual transmis-

sions is

= 1 - (1-qij)m (A-2)

= 1 (l -

For large values of m, qij goes to 1. When qij = 1 the throughput

(in bits/sec) will increase to the results for perfect capture.

qij is substituted for qij in all throughput equations for chain and

store networks which we presented previously. The maximum obtainable

throughput for different topologies are given in Tables A.1 through

A.3. The probability of hearing acknowledgments is also given in

Tables A.4 and A.5.

We see from Tables A.4 and A.5 that the probability of hearing

acknowledgments approaches 1 when m = 5 for zero connectivity and -A

m = 4 for full connectivity. The throughput almost increases to the

values of perfect acknowledgment for m = 5.

-4-
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Table A. 1. Effect of imperfect acknowledgments on the throughput
as a function of M for the chain network (Sij = Sji = S).

Throughput of a chain
Length number of virtual transmissions, m Perfect
of Chain I1 Acknowledg-
(N) 1 2 3 4 5 6 17 8 ment
4 .106 .119 .124 .127 .127 1 .1275 1276 .128 .128

5 .083 .1 .106 .108 .11 .1105 .1108 .1109 .111

6 .072 .09 .096 .1 .101 .102 .102 .102 .102 0

7 .066 .085 .091 .095 .096 .097 .097 .097 .097

8 .063 .081 .088 .091 .093 .094 .094 .094 .094

9 .061
10 1.06 1.078 1.085 .088 .09 .09 1.09031 .09051 .091

Table A.2. Effect of imperfect acknowledgments on the throughput
as a function of m for five legs in a star network with
zero connectivity (Sij = Si = S).

Throughput of a star with five legs
number of virtual transmissions, m

Length Perfect
of Legs I Acknowledg-
(K) 1 2 3 4 5 6 ment

1 .058 .058 .058 .058
2 .033 .039 .042 .043 .044 .0445 .045

3 .029 .037 .04 .042 .043 .0433 .044
> 4 .029 .037 .04 .0415 .042 .043 .044 1

-5- -
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Table A.3. Effect of imperfect acknowledgment on the throughput
as a function of m for six legs in a star network with
full connectivity (Sij = Si = S).

Throughput of a star with six legs
number of virtual transmissions, m

Length Perfect
of Legs Acknowledg-
(K) 1 2 3 4 5 6 ment

1 same as perfect acknowledgment .083

2 same as perfect acknowledgment .042

3 .023 .029 .033 .035 .036 .037 .04

4 .023 .029 .032 .034 .035 .036 .039

-.

Table A.4. Probability of hearing acknowledgment (qi.) as a

function of m for five-legs of length 5 in a star net- 0
work with zero connectivity.

number of virtual transmissions, m

i 11 2 3 41 5 6 7' 8 910

qo1 .530 .700 .810 .86 .91 .94 .95 .97 .99

q2 .670 .890 .960 .990 .997 .999 1

q23 .890 .980 .990 .999 1

q34 .910 .990 .994 .999 1

q45  1 1 1 1

q1o .910 .990 .999 1

q21 .930 .990 .999 1

q3 2  .940 .990 .999 1
q43 .970 .999 1
q54 I

-6-



Table A.5. Probability of hearing acknowledgments (qij) as a

function of m for six legs of length 5 in a star net-
work with full connectivity.

number of virtual transmissions, m

qij1 2 3 4 5 6 7 8 9 10
qoI

q.2 .40 58 .67 .73 .75 .81 .85 .86 .89 .91

q2 3  .912 1.990 .999 1

q34 .91 986 .997 1

q45 1

q1o 1
q2.94 .99 .999 1
q 3 2  .95 .99 999 1
q43 .96 .99 .999 1

q541

We compared the two protocols for acknowledgments and tabulate

the results in Tables A.6 and A.7 for chain and star networks. Thu

throughput of the center node increased by 50% for a ten node chain,

by 48% for zero connectivity, and by more than 50% for full connec-

tivity. We see from Table A.8 that for m > 4 full connectivity retains

its superiority with respect to zero connectivity.

Table A.6. Comparison between old and new protocols for variable
lengths of chains.

Length of Throughput, Imperfect Acknowledgment I

* I Chain (N) odIIncrement0Chain__N_ old protocol new protocol (m=5) I

4 .106 .127 20
5 .083 .11 33

6 .072 .101 40
7 .066 .096 45

8 .063 .093 48
10 .06 .09 50
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Table A.7. Comparison of old and new protocols for star network.
L= number of legs; K= length of legs.

0.

Throughput of the Center Node.
Imperfect AcknowledgmentsConnec- ,%

tivity ' old protocol new protocol (m=5) Increment

Zero 'L = 5 .145 .210 48

Full
L = 6 .138 .210 52

Full I

L = 9 .139 .216 56
K> 4

Table A.8. Comparison of connectivities for new protocol.

Throughput of the Center Node
number of virtual transmission, m

Connec-
tivity 13 4 5 6 7 8

Zero .,
L = 5 .145 .185 .20 .206 .210 .215 .2155 .216
K >4

Full '
L = 6 .128 .174 .192 .204 .210 .216 .222 .224
k >4
Full I

L = 9 .139 .176 .198 207 .216 225 .230 I 234K>4

K

As we mentioned before the length of a packet is increased by a

factor

f h + d + (m+1) b
h d+b

-8-



"°1

because of the virtual transmissions. We inserted m b extra bits into

a packet. Thus, the throughput is given by
0S.• . PN . h~d+b O

Sij Gij P(Ni N ijh + d + (r+)b (A-3)

If we choose b = 12, h = 84, m 5, and d 960 bits then

h+d+b m b
h + d + (m+l) • .946 or h + d + b= .057

This means that the throughput decreased 6% when compared with per-

fect acknowledgments. But we know from Tables A.6 and A.7 that the

throughput increased much more than 6% because of the new protocol.

The results in Tables A.1, A.2 and A.3 were.obtained by using

Sij = Gij P(N i N) qij (A-4)

In order to incorporate Eq. (A-3), the results in Tables A.1, A.2

and A.3 are divided by Eq. (A-i).

A.3. Optimum m for the New Protocol

In the previous section we have studied the effect of the new

protocol on throughput. We found that for m > 4 the star network with

full connectivity retains its superiority with respect to the other con-

nectivities. In this section we will more closely study the L-leg star

network with full connectivity.

We know that increasing m will increase qi and hence throughput.

There is, however, a tradeoff between the throughput and overhead

(due to the increase in the packet's length) due to virtual transmissions.

For several cases we will find the optimum m. First we assume that at

all nodes, if a packet's identifier is transmitted virtually m times, then

-9-



we also insert m identifiers of received packets into the header of a

packet which is ready for transmission. The next m transmissions,

after receipt of the packet in question will include the identifier of that

packet.

For this case the throughput is given by 2
* h+d+bSij = Gij P(Ni, N) qij h+d+(+) (A-5)

where j is the one of i's neighbors.

The solution of Eq. (5) for the 9-leg-star network is given in

Table A-9 when k > 4. The optimum m is 10 for this case.

Table A.9 Total throughput of a hotspot for a star network (L = 9,
K 4) when increment in header of node i, i = m b,
i = 0,1,2,..., K.

m ST

1 .1323
2 .1682
3 .1886 ..
4 .1961
5 .2025
6 .2091
7 .2130
8 .2145

10 .2146
11 2142
12 .2138
15 .2110
20 .2045

In Eq. (A-i) we assume that the increment in a packet's length is

m b bits. But we know that the hotspot (node 0) and nodes at the

end of the legs do not have to send passive acknowledgments because

the transmissions into the hotspot and nodes at the end of the legs will

-10-



never have collisions. Thus there is no increment in the packet's

length for these nodes. Equation (A-5) can be modified to obtain exact

results as follows:

Again we assume that node 0 sends S units of traffic in each

direction. Then the nodes that have m • b bits increment in their

packet's length must send I S units of traffic to their neighbors

where

h + d + (m+l)b
+ h d+b

For left to right transmissions the throughput equations are:

Sol = S = Go, P(No, N1 )

Si,i+1 = I - S G i,i+* , P(Ni, Ni+) q *ii+l for i =1,2,..., K-

For right to left transmissions: (A-6)

Sk,k-1 = S = Gk,k_1 • P(Nk , Nk.1)
*

Si+l,i = I - S = Gi+l i * P(N i , Ni+ 1) qi+l, for i 0,1,..., k-2

We expect that the results from Eq. (A-6) are greater than the

results from Eq. (A-5) because Eq. (A-5) is solved assuming that the

packet's length is incremented by m - b bits at all nodes.

The results for Eq. (A-6) are given in Table A-10. We see from
Table A-10 that the optimum m is 11 and the total throughput of the

hotspot, ST, is .2222. When m > 11 the throughput decreases because

of overhead due to virtual transmissions.

We know from TIable A-5 that q.. - 1 when m = 4 for all i and j

except q 12 . This means that nodes 1,3,4,..., k-1 need transmit a

packet's identifier only four times. Let us assume that node 2 trans-

mits m' times and all the other nodes transmit m times. Then the

packet's length is incremented by

-11-9



Table A.10. Total throughput of the hot spot in a star network
(L = 9, K = 4) when increment in header 0 =I k  0;
Ii = m b, i = 1,2,3,..., k-ii

m ST

1 1324
2 .1699
3 .1893
5 .2082
6 .2134
7 .2165
8 .2191

10 .2215
11 .2222
12 .2222
15 .2215

I = m - b bits for i = 1,3,4,..., k-i

12 = m - b bits (A-7)
J

= 1k = 12k = = ILK =

With these assumptions Eqs. (A-6) become

for left to right transmissions

S =Sol = Go P(No, Nj)

I S = Gii+ P(N i, N+) qi,i+ i = 1,3,4,..., k-1
*

I' S = G23 - P(N 2 , N 3 ) • q23

for right to left transmissions we have: (A-8)

I •S G P(N i , N qi+ , i =0,1,2,3,..., k-1i+,ii+1 1+~

I' = G21 P(NI, N2 ) q21

S S k,k-i k,k- - (Nk' Nk 1) 9
where S

I h + d + (m+l)b
(A-9)h + d + b(A)

and

h + d + (m+1).b (A-)h + d + b (-0

-12-



For h = 84, b = 12, d = 960, and m = 4 the results for Eq. (A-8)

are tabulated in Table A.11. The optimum m' is 19, and the total

throughput of the hotspot, STI is .2390. With m = 4 and m" = 19 all

qij 1, therefore, the nodes will not send any significant number of

duplicate transmissions to the next hop. Since for node 2, m' = 19,

the increment in a packet's length there is 22% (228 bits). For nodes 1

and 3, the increment in the packet's length is 4.5% (48 bits).

Table A. 11. Total throughput of the hotspot in a star network
(m = 4, L = 9, K = 4) when increment in header length
o= k = 0; 12 m" - b; I. = m • b, i = 1,3,4,..., k-i

m ST

10 .2306
11 .2327
12 .2340
15 .2370
18 .2383
19 .2390
20 .2390
21 .2390
30 .2383

We can further increase the throughput by reducing overhead as

follows:

0 A node, i, receives S R(i) units of the successful transmission

(throughput) from its neighbors where

SR(i) = • Sji (A-11)

JeN i

For each unit of suc:cessful transmission node i sends mi passive ac-

knowledgments so that he total number of acknowledgments at node i is

-13-



m R( ) per unit of time. But node i transmits with a rate of

G.i P(N i ) and we know that Gi * P(N i ) > SR(i). Therefore each

transmission must carry r i passive acknowledgments where

m i • SR(i)
r G. (i (A-12)

The overhead in a packet's length at node i is given by
I = r i  b , for i = 0,1,2,..., k.

If we assume that the hotspot (node 0) and nodes at the end of

each path (leg) want to send S packets/unit time then the throughput

is given by

h~d+ri'*b ,

Sij h d+b • S Gij P(Ni, Nj) qij (A-13)

for i = 0,1,..., k, and where j is a neighbor of node i.

For instance for the transmissions from left to right we have:

when i 0

So S Go P(N 0 , Nl). qS

1=1

Sol + S2 1
h + d + m •( 7 p(N 1 )- b

S1 2 = S =G12 P(Nl, N2 ) q12h+d+b

i - 2

S12 + S3 2  b4h + d + m" (G; . p(N) b

S23= 2 S G23 P(N 2 , N 3 ) q23
h+d+b

i= k-i

A

-14-9



Sk.k.. + Sk1

5k-lk hh~m + kldP+kb

-Gk P(Nkl Nk)

In order to solve Eq. (A-13) we have to know the right hand side

of Eq. (A-13) for a given S. We use the flowchart given in Fig. 2 to

solve Eq. (A-13). It is important that the initial S must be chosen

such that Eq. (A-8) has a solution.

Initial S, given

Solve Eq. (A-8), and
get S..j G., P(N.)

Solve Eq. (A-13), and
get new S', G- P (N i)

ii' S1' NO1 ijS

YES

S S1TO

FIGURE 2. FLOWCHART TO SOLVE EQ. (A-13)
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The results for Eq. (A-13) are given in Table A.12. We see that

the total throughput of the hotspot, ST1 is .2454 and the optimum m' is

27. Even though node 2 transmits a packet's identifier 27 times the

increment in the packet's length is only 78 bits which is a 7% incre-

ment. This means that at node 2 each transmission carries 6.5 identi-

fiers (r 2 = 6.5). We also found the r, = 3.79 and r 3 = 3.82 which are

4% increments. In the previous report we saw that there was a 46% re-

duction in throughput due to imperfect acknowledgments when we used

the old protocol (no virtual transmissions). Here we see that with the

new protocol there is only a 2.6% reduction in throughput with respect

to the result for perfect acknowledgments (.252). Up to this point we

assumed that the original length of a packet is 1056 bits (header = 96,

data = 960).

Table A. 12 Total throughput of the hotspot in a star network
(m = 4, L = 9, k = 4) when 1o = 1k = 0; 1i ri • b,
i = 1,2,3,..., k-1

m, ST

10 .2327
11 .2348
12 .2364
15 .2405
20 .2433
25 .2447
26 .2447
27 .2454
28 .245429 .2454

*-16-



The effect of the overhead depends also on the length of the data

portion of a packet. If the data portion of a packet, d, is small the

overhead will be large and the throughput will be reduced. We have

solved Eq. (A-13) for different values of d. The results are given in

Table A. 13. In Table A.13 we also tabulated the reduction from the

result for perfect acknowledgments. We see from Table A.13 that when

d increases the throughput also increases and the overhead gets smaller.

The overhead and r i are given in Table A.14. When d = 50 bits the

overhead at node two is 36% but when d = 2000 the overhead is only 4%.

The reduction in throughput from the result of perfect acknowledgment

is 18% when d = 50 but it is only .9% when d = 2000.

Table A. 13. Total throughput of the hotspot in a star network
(m = 4, L = 9, K = 4) for different values of d.

d m ST % Reduction from perfect
T acknowledgments

50 16 .2074 18
100 20 .2173 14
200 15 .2243 11
400 19 .2355 7
600 22 .2405 5
800 27 .2440 3

4 960 27 .2454 2.6
1200 30 .2468 2
1600 35 .2489 1
2000 35 .2496 .9

47

-17-



Table A. 14. The percentage of overhead as a function of d.

PJ
over- over- lover-
head head I head

d r, r 2  % r3 %

50 3.49 29 4.35 36 3 5 29
100 3.55 22 5 30 3.6 22 1
200 3.56 14 4.36 18 3.65 15
400 5.16 13 7 17 5.25 13
600 3.74 6 5.57 10 3.8 7
800 3.79 5 6.5 9 3.82 5
960 3.79 4 6.5 7 3.82 4

1200 3.83 3.5 7.8 7 3.84 3.5 S
1600 3.83 3 9 6 3.84 3
2000 3.84 2 8 4 3.85 2

where:

r. • b
overhead =h + d + b "100; h = 84, b = 12

B. NEW SWITCHING TECHNIQUES

Our research in this area focused on developing an optimal packet-

ization scheme for situations where conventional packetization techniques

are unsuitable. In particular we seek to maximize the number of users

which could share a channel of given capacity subject to a constraint on

the average per character delay, where delay includes packetization

delay as well as queuing delay. We are particularly interested in cases

where the packetization delay is significant and the delay constraint is

significant. An example of such a situation is the case where many

interactive users access a packet switched network with low speed

access links and require an echo from a remote host of the characters

they enter.

o -18-



We have obtained on optimal scheme and, in this section give a

proof of its optimality. The scheme is surprisingly simple. One ob-

tains via an elementary search procedure the optimal value of y, the

average packet length; i.e., the value of y which maximizes M, the

number of users in the system. In general, y is not an integer. We

then packetize with probability 1 - q if n characters have arrived and

with probability q if n + 1 characters have arrived, where y = n + q.

The procedure is easy to implement in practice and is significantly

better than either packetizing on a fixed number of characters or after

a fixed amount of time.

B.1 An Optimal Packetization Strategy

We consider the problem of determining the optimal strategy for

packetization in a multi-user packet switched network. The objective is

to maximize the number of users, M, in the system subject to a restric-

tion on the average per character delay. This problem and the input

model we use are motivated by interactive data entry applications where

remote echoing of each input character is required. It is common

practice in such situations to packetize on every character or on the

basis of a very short timer. The result of this is that very small -A

packets are sent. This is inefficient as the packet header than repre-

sents a significant overhead, often in excess of 1000%. This has often

led such users to abandon remote echoing (or, alternatively, to abandon

packet switching). We here offer a third choice.

We assume that each user produces a character with probability p

* every t seconds. Characters input by user i are stored in buffer, bi ,

until it is determined on the basis of a packetization strategy that a

* -19-



packet should be formed. At this point, a header of length h is added

to the data characters and the resulting packet is placed on a queue

for transmission on a channel with capacity c characters per second.

The average per character delay, 15 is given by

15 =5 p + 15s + 15w  (B-i)

where 5p ,5 and 5 are the average per character packetization,

service, and queueing delay, respectively. All times are measured in

slots of length t.

B.2 Packetization Delay

We assume that characters arrive independently. Each character

in a packet waits for all the remaining characters to arrive. If the

packetization scheme results in a packet length distribution of

fi = Prob [Packet length is i characters)

then 1i 5, the average per character packetization delay, is given by

15P =i7- f i ai/O

1:where ai is the total average packetization delay suffered by all charac-.,-_-

ters in a packet of length i and y is the average packet length, Y- = 7f i. -

Since characters arrive independently at a rate of p characters per

slot, the average interarrival time between characters is 1/p slots

and a. obeys the recurrence relation

1 ~i=~ ti1 i-
+ i p

This together with the initial condition d. = 0, yields

4I i - i(i-1 ) .O

1 2p
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Thus, for example, if all packets were n characters long

15 =_n + 1 (B-2)
p 2p B•

and if packets were n characters long with probability 1 - q and n + 1

characters long with probability q, so that the average packet length

y is n + q, then

15P n + q-1 + q(1 -q) V +q(q -p1)
p 2p 2p(n+q) - 2p 2p

Thus we see in this case that I is linear with y for integer values of
p

y and is the continuous piece wise-differentiable function given in

Figure B. 1. Note that the function is indeed continuous and matches
v*0

the function 7-1 for integer values of y since q(1-q) = 0 for q = 0 or
2p

1. Note that the maximum difference between D and Y- occurs at

t t2p
q= and equals and that this value decreases as y increases.

spy

Fig B.1 Average Packetization Delay for 2-point
Packet Length Distribution, y n+q

2pD
p 7

8-i • /-

7-, 2pD

61
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B.4 Service Time

The average service time per character 15 given by

Ds  [(7- fi i2 y) + h]/c

where c is the high speed line speed in characters/slot. Thus for

constant length packets of length n

Ds = (n + h)/Cs

and for the 2-point distribution given above with parameters n and q

1D n + q + h +q(l-q)
s c c(n + q)

Thus we see that 15 behaves exactly the same way 5 does. It is
5 P

continuous, piecewise-differentiable, and follows Y+h closely, the error
C

getting smaller as y increases.

B.5 Waiting Time

The delay Dw due to waiting time per character is a function of

the distribution of the interarrival time between packets. We have e

carried out an exact analysis of the waiting time for fixed length

packets and obtained an expression relating it to the packet length

(see the previous semiannual report). Unfortunately, we have been " S

unable to obtain a closed from for the relationship except for y = 1 and

y = 2. The results in these cases support the approximation of 15 byw
the M! G! 1 queuing delay formula. We will thus make the assumption 5

that 5w can be approximated by

4M X 'x._,

2c2(1-p)
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where M is the total number of active users

X is the average arrival rate per user in packets/slot; thus X 0
=/y

is the second moment of the service time

and p is the average channel utilization

can be written as

X i fi(i + h)2/y

For constant length packets this is simply (n+h) 2 /c 2 and for the

2-point distribution above is

= (n + q +h) 2 + q(l-g)

The channel utilization, p, is given by

M p (y + h)
cy

We thus have an expression for the total delay per character, 15,

5 i(i-) + i2 /y + h + MX(i+h) 2  ] (B-3)

1 2py c 2c 2 (1-p)y

B. 6 Derivation of the Optimum Packetization Strategy .

We now consider the problem of maximizing M, the number of

users, subject to a constraint, D*, on the average per character total

delay. We thus seek the optimal value of the packet length, y, and the

optimal packetization scheme which will yield this optimal length.

Given M and y, we see from equation (B-3) that the packetization

scheme which minimizes D5 is one which minimizes the second moment of

the packet length, Ii 2 fi. We are constrained, of course, to packet
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length distributions where the packet length only takes integer values.

It is easy to see that the distribution which minimizes the second mo-

ment subject to these constraints is the 2-point distribution which we

have been discussing; i.e.,

l-q n

f q i =n+1

0 otherwise

where y = n+q. To see this we use the technique of Lagrange multi-

pliers to find the minimum of

7i2 fi + of lifi + 7fi where

a and 0 are the Lagrange multipliers. The last two terms are used to .

satisfy the constraints 7-if i = y and 7fi = 1. In addition all fi > 0.

Differentiation with respect to the fi we get

=0 for all i such that f > 0

> 0 for all i such that fi = 0

Thus there are at most two non-zero values of fi that can satisfy the

equality condition above. To satisfy the inequality condition these two

values of i must differ by one.

Thus we see that for a given value of y and M, the total delay is

minimized by any packetization scheme which gives rise to a 2-point

packet length distribution.

We approach this problem in a different way by considering packet-
0O

ization delay and service time together. Any packetization scheme can

be thought of as a decision rule which, given the state of the buffers,

decides whether to packetize or not. Figure B.2 shows the state space

for this decision process. The root of the binary tree shown in Figure

B.2 represents the state where the buffer is empty and no time has
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Ij "O

Fig. B.2 The State Space for the Packetization Decision Process

elapsed. Note that the packetization rule considers each user sepa- 1O0

rately and hence the buffer is that for a single user. Each link repre-

sents a transition in a single slot time. A transition toward the left (to

a shaded node) occurs with probability P and corresponds to the arrival

of a character. A transition to the right corresponds to a slot in which

no character arrives. Tracing a path from the root to any node, j, one

can determine the probability, rj, of reaching that state by multiplying

all of the link probabilities. One can also find the number of charac-

ters, nj, in the buffer by counting the number of shaded nodes in the

path from the root to node j. Finally, one can determine d the total

delay due to packetization and service time suffered by all characters in

the buffer, if a packet is formed at node j. This is done by adding

together the delays of all the characters in the packet.

Let x. be a decision variable taking the value 1 if we packetize at

node j and zero if we do not. Any packetization scheme can be defined

solely in terms of the x . Furthermore,
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y - x. r. n

ii]] j

and [51 = .: x. rj d.

where 15 is the average packetization and service delay for all charac-

ters. We seek to maximize y subject to the constraint 5 1/y < D*. The

constraint satisfies the time delay. Making larger increases the

channel efficiency. There is also an additional constraint that the

packetization scheme be consistent. In particular, x. = 1 implies that
J

Xk = 0 for all successors k of node j since once we packetize at node j

we will never reach node k.

It is somewhat easier to see what the optimal policy is if we con-

sider the decision process in a slightly different way. We define a new

set of decision variables, wj, associated with the nodes j. The w. are

related to the xj above by the rule that if x. = 1 then wj = 1 for all i

predecessors of j and w = 0 otherwise. For all consistent values of x

the w. are well defined. Setting w = 1 can be thought of as deciding

not to packetize at node j.

We now define gj as the increment in packet length due to the
I!

decision not to packetize at node j. Similarly we define h. as the

increment in the average total delay, 151.

The expressions for y and 1 can then be rewritten in terms of

the new decision variables, wj, as follows:

Y . w. g.
J 1

15,= 7 wj h
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The incremental effect of not packetizing at node j is shown in

Figure B.3. As can be seen, two nodes, k and 1, will be counted in

the sums for y and i5x. instead of node j.

gj= (1-q)rj

2n. + h +1 h. = (n. + c )r
c

In order to maximize y for a given D we would prefer to choose

nodes j with maximal gj/hj, i.e. nodes which maximize the incremental

j,rjnj, d 

1-q q

k 1

rk=(1-q)r r- qrj

nk=n.+l n = n.kI
dk=dj+nJ d =d + n

+2n. + h + 1

c

Fig. B.3 Incremental Effect of Not Packetizing at Node j

gain in y per unit 15. Note that in reality it is 151/ not 1i which is

the constraint but since we seek k to mimize we are simultaneously

loosening the constraint as much as possible.

In order to maximize g./h. we choose nodes j with the smallest

possible n. and set w. = 1 for those nodes. We continue to pick nodes

until we find that setting the next wj = 1 would cause I5/y to exceed
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D*. Until this point, we have assumed for the sake of simplicity that

w. would only take the values 0 or 1. In fact we are free to assign 0

any value in the range 0 to 1 to each w. At the point where setting

w. = 1 would violate the constraint on 15 1, there exists a value, a, of

w. which would cause the constraint to be satisfied exactly, since D*y

is a monotore function w. Thus, we set wj = a for this last j and

satisfy the constraint with equality.

It is clear that this procedure will indeed find an optimal set of

vaiues for the w. in the sense that y is maximized. To see this we

need only note that in order to increase the value of any w. above the

value set by this procedure, we would have to correspondingly decrease

the value of some other w k with a resulting decrease (or at best no

change) in . This is because we are selecting the nodes j order of

gj/h largest first. 0

Note that at any stage there is an infinite number of nodes j with

the same value of n. to choose from. Any selection will yield exactly

the same value of y. Indeed, one need only ask if w. can be set to 1

for all nodes with a particular n. If so, we do this before asking the

question for the next larger value of n. Thus we avoid any conceptual

difficulty with the finiteness of the decision process.

We are left then only with the question the consistency of the

packetization policy. This too, however, is no problem. Note that if

we set wj = 1 if n. < n* and also for a collection of nodes with nj = n*

and with aggregate probability l-q then we have a consistent packeti-

zation policy which adheres to the optimization criteria. This policy can

be simply stated, and equivalently implemented, as waiting until the 0

n t h character arrives, flipping a coin which comes up heads with
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probability q, packetizing at that point if the coin comes up tails, and

packetizing after the next character arrives otherwise.

We have proven that given y, the above packetization scheme is

optimal. We now seek the value of y which maximizes M, the number of

users. For 57 between any two integers, n and n+1, 15 is unimodel and

any simple search procedure, e.g. binary search, suffices to minimize 15

or alternatively maximize M. The small "bumps" introduce by the

q(1-q) terms in 15p and 15s necessitate that, strictly, we search each

unit interval separately. In practice only a small number of intervals

will need to be examined for most values of c and 15 because the q(1-q)

term will usually be insignificant in comparison with the variations due

to a unit change in y. Thus, the overall search is computationally

reasonable.

Thus, we can obtain an optimal packetization strategy for any

given 5. Computational experience indicates that for small 15 and large

c this optimal strategy outperforms ordinary packetization schemes by

as much as 20%.

C. PROBABILISTIC ANALYSIS OF ALGORITHMS

We have obtained results in this area indicating that even rela- 0"

tively simple algorithms will, with high probability, obtain near optimal

solutions to certain difficult optimization problems. This is encouraging

in that it implies that problems, previously considered intractable, may 0

in fact be solvable, at least with high expectation of success. The

results are also useful in guiding heuristics towards potentially fruitful

areas within the solution space and in avoiding unnecessary effort in

areas where little further progress can be expected.
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Specifically, we have analyzed the intrinsic probabilistic behavior

of the 3-Satisfiability Problem and found that, independent of the size

of the problem, there is only a limited region of uncertainty, i.e., only
a finite set of values where even the simplest sensible algorithm can

make an error. This problem, which is described in detail below, is

representative of a very large class of difficult combinatorial problems

and can, in fact, be used as a vehicle for solving many other problems.

Thus, we believe these results can be extended to other problems as

well, most notably, to problems in network design such as facility

location and link topology optimization. We are currently in the process

of investigating such extensions and of examining the probabilistic

performance of several specific heuristic algorithms.

C.1. Probabilistic Behavior of the 3-Satisfiability Problem

The 3-Satisfiability Problem has a simple and homogeneous struc-

ture which makes it easy to develop and study a probabilistic model. It

also does not involve any numerical data which would otherwise obscure

the nature and generality of the results which we obtain. These re-

sults can, however, be directly extended to optimization problems which

do involve numerical data, as we will see in the following discussion. -0

In the ordinary satisfiability problem, we are given a Boolean

expression, E, over m Boolean variables vl,v 2 ,...,vm and we ask if

there exists a set of truth values for the variables which will result in

E taking the value True. Thus, each of the v i can take either the

value True or False (alternatively denoted by 1 or 0) and E will then

take either the value True or False based on the values of the v.. E is .

usually given in disjunctive normal form, i.e., as a set of clauses all of
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which must be True in order for E to be true. Each clause contains

one or more variables and is said to be true if at least one of the

variables in the clause is assigned the value it takes in the clause.

Thus for example, E = (v 1 + v 2 )(=V + v 3 ) has 2 clauses. The first,

(v 1 + v 2 ) is true if either v, is True or v 2 is True. The second is

True if either v, is False or v 3 is True. Thus E is satisfiable as the

values v, = True, v 2 = True, and v3 = True satisfy both clauses and

hence E. There are several other assignments of truth values vj, v 2 ,

and v 3 which will satisfy this E. The expression (vl)( 'l + v 2 )(v 2 ) on

the other hand is not satisfiable.

The 3-Satisfiability Problem is a version of the ordinary Satisfia-

bility Problem where all clauses contain exactly 3 variables. Garey and

Johnson, in their book Computers and Intractability, show this problem

is NP-complete by showing that any ordinary Satisfiability Problem can

be transformed into a corresponding 3-Satisfiability Problem of roughly

the same size. Thus the two problems are equivalent.

Many other problems can also be transformed into corresponding

3-Satisfiability Problems. In particular, combinatorial optimization

problems such as the Traveling Salesman Problem or the problem of

, locating earth stations in a satellite network can be so transformed. .- 0

Thus, we can produce a Boolean expression which corresponds to a

particular optimization problem in the sense that if the expression is

satisfiable then the optimization problem has a solution with a value less 0

than or equal to a given constant (for minimization problems) or greater

than or equal to a given value (for maximization problems). Further-

-=- more, the satisfying truth assignment can be used to obtain the solution ,

to the corresponding optimization problem directly. By altering the
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value of the ccnstant in the above transformation the optimal solution to

the corresponding optimization problem can be found via binary search;

i.e., if we know the optimum lies between values cl and c2 , we try the

value cl + c21 .. This technique is known as thresholding.

One can determine if an expression is satisfiable by assigning all
'M02m possible truth values to its variables. This approach is, of course,

not practical for large values of m. There are many sophisticated tech-

niques for answering the question whether or not a given expression is

satisfiable, but all have running times which ultimately grow exponen-

tially with the number of variables and thus are limited to problems of

modest size.

We obtain here a technique which yields the a priori probability of

an expression with a given structure being satisfiable given a probabil-

istic model of the space from which the problem is drawn. For prob-

lems where this probability, PSI is very close to 1 or very close to

zero, we need seek no further. Only for problems where Ps is signifi-

cantly different from 0 or 1 need the question be investigated any

further. In some cases, the P5 itself is all that we need. For exam-

pie, if we have found, using a heuristic algorithm, a solution of value

cl to a given maximization problem, and have determined that Ps is less .

than .01 for an expression corresponding to the existence of a solution

of value greater than or equal to cl + a (for a much smaller than c,),

then we are reasonably certain that there is not much to be gained from

an attempt at further optimization. This is very important because it

has often turned out that it is much harder to verify the optimality (or

near-optimality) of a solution than to find an optimal solution especially

when the solution space is rich and there exist many alternate near-

optimal solutions.
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We consider a uniform probabilistic model for the 3-Satisfiability

Problem where all clauses are equally likely. Thus a problem is totally

characterized by v and b, the number of variables and clauses, respec-

tively. We will consider two models which are nearly equivalent. In

one case, clauses are picked without replacement, i.e., a given clause

can appear at most once in an expression. In the other case, clauses

are picked with replacement.

Duplicate clauses do not affect the satisfiability of an expression.

We can thus relate problems where the clauses are chosen with replace-

ment to problems where the clauses are chosen without replacement by

saying that a problem with v variables and b clauses chosen with re-

placement is the same as a problem with v variables and b' clauses

chosen without replacement if the number of distinct clauses in the first

problem equals b". The relationship between the number of clauses

chosen with replacement, b, and the average number of distinct clauses

is given by the following argument.

Let Xb be the number of distinct clauses when b clauses are

selected with replacement. Then Xb < b and Xb = Xb_1 + a, where

a =1 with probability P new and a = 0 with probability 1 - Pnew' Pnew

is the probability that the b th clause is different from all the first

b - 1. Pnew is simply the ratio of the number of unchosen clauses to

the total number of possible clauses. The number of possible clauses is

B = 8(3)

since each clause contains 3 variables each of which can take either of

two values. Thus Pnew is given by:

P B -1 (Innew B

-33-



Let f(b) be the average number of distinct clauses. Then

E(XblXb-l) = Xb- + Pnew (C-2)

and

L

f(b) = E(Xb) = f(b - !) + B - f(b-l)B (0-3)

Thus

f(b) = f(b-1) x B + 1 (C-4)

As an example, if v = 10, then B = 960 and f(50) = 48.7. As we will

see, we are most interested in values of b near 5v. For v = 20 and

b = 100, f = 99.5. As v increases, f/b approaches 1 very quickly.

Thus, there is little difference between choosing clauses with or without

replacement.

C.2. Analytical Method 1 0
We now turn to the problem of estimating Ps (v, b), the probability

of expression E, with v variables and b clauses, being satisfiable.

Given a problem with v variables and b clauses, we define the truth

assignment graph, G, associate( with that problem to be a graph with

2v + 1 nodes. Nodes 1 through 2v correspond to the possible truth

values for the v variables and node 0 is a distinguished pseudonode.

Each clause in E is inconsistent with one eighth of the truth assign-

ments, specifically those in which all three variables in the clause have

values opposite to their values in the clause. G contains an arc be-

tween node 0 and any node corresponding to a truth assignment which

does not satisfy E. We thus proceed through E clause by clause and

add arcs between node 0 and nodes which do not satisfy the clause.

There are 2 v-3 arcs corresponding to each clause. In general, arcs
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'belonging" to different clauses overlap, i.e., there will be truth

values inconsistent with more than one clause. We do not show the

multiplicity of these arcs. Thus, G will in general contain fewer than

b x 2 v-3 arcs. We are interested in G because PS, the probability E is

satisfiable, is precisely equal to the probability that G is not con-

nected. Figure C.1 shows a truth assignment graph.

The problem of whether a random graph is connected or riot has

been studied extensively by Erdos and Renii. We will proceed along

similar lines.

0*

0000 0001 01 01

/1

/ 1011

//-

E = (v1 + v 2 + v3) (vI + v 2  v 4 ) (V2 + v 3 + v 4 ) .

FIGURE C.1. A TRUTH ASSIGNMENT GRAPH

We define A(v, k, b) to be the number of Boolean expressions 6

whose corresponding truth assignment graphs contain k or more isolated

nodes (i.e., nodes with no incident links). Ps(v, b) is then given by

2v

Ps(v, b)= 1 2. (- 1 )k A(v, k, b) (C-5)
S() (B

k=-35
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where B =8(v

This relation follows from the fact that if an expression is satis-

fiable then its corresponding truth assignment graph must contain at

least one isolated node. Note that the alternating sum is required in

order to account for the situations where graphs with more than k

isolated points are included in terms with k or more isolated points. We

seek the number of expressions with graphs with one or more isolated

points. The alternating sum gives us the number with exactly zero

isolated points.

We can write A(v, k, b) as

AE v
A(v, k, b) = 2 (v) 2 NM(v, i, k) B(v, i, k, b) (C-6)

i=O 0

where NM(v, i, k) is the number of ways of selecting k clauses which

match in i specific variables (i.e., k clauses in which i specific vari-

ables take the same truth value in all k clauses) and B(v, i, k, b) is

the number of Boolean expressions whose corresponding truth assign-

ment graphs have k or more isolated points and the isolated points

match in i variables.

*1
v-i 2m 2v -i-m  (viImz 2

NM(v, i, k)= v (- 1 )m ) m k
m=O k m

(C-7)

where the approximation is made by replacing
2v-i-m ( 2 v-im)k

k )by k.

Now, B(v, i, k, b) c(VbIk) ) where c(v, i, k) is the totalb
number of clauses which are permissible in the sense that they give
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rise to graphs that have the requisite number of isolated points and

matched variables. c(v, i, k) can be estimated by

c(v, i, k) - 8( v) exp[- 2kk(v-i) l"(C-8)

(2 -2)8v

The details of this approximation, which are somewhat lengthy, are

given in W. Chuang's thesis.

Using the above approximations and Sterling's approximation

N+ -Nn! =- 27 N e

we find by algebraic manipulation that

Ps(v, b) - 1 - exp(-exp (-c)] (C-9)

where b = 8(9n 2 v + c)

and c is a constant.

Thus, only for b = 5.5 v does Ps(v, b) take values significantly

different from 0 or 1 since for any value of c less than -2, Ps is nearly

1 and for any value of c greater than +4, Ps is nearly 0. Figure C.2

summarizes the relationship between P and c. Note that this is not as

function of v or b directly. The approximations used in obtaining this

analytic form are, however, functions of v as we will see. The approx-

imation turns out to be reasonable for modest values of v (e.g., v in

the range 10 to 30) which we are interested in. Note especially the

sharp drop from 1 to 0 over the interval c = -2 to c = +4.

C.3. Analytic Method 2

Because of the approximations made in the previous analysis, we

sought a second method to independently verify the approach. We
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consider the case now where clauses are selected with replacement. We

note that all clauses are equally likely and that a given clause elimi-

nates 1/8 of the possible truth assignments. Indeed, because of this

symmetry, on the average the bth clause in an expression eliminates 1/8

of the remaining truth assignments which satisfy the first b-1 clauses.

We say a truth assignment is eliminated if it does not satisfy an expres-

sion. Thus, if we define Ns(v, b) as the number of truth assignments

a satisfying an expression with v variables and b clauses, we have the S

recurrence relation

2v3 N h(v, b-i) 2 v-

N (v, b)= (v, b-i) 2v - 3 + " 2v-3
s s2 v

s(V, b - )= ( s) (v, 0) (C-10)

where N is the expected value of N

Since N s(v, 0) = 2 v , i.e., all truth assignments satisfy an expres-

sion with no clauses, we have

N 5(v, b) = (7)b 2v (C-11)

P s(v, b) is by definition the probability that Ns(v, b) is greater

than zero. Unfortunately, we only have an expression for N's the
average value of N and not for the value of N itself.

5 S

If Ns (v, b) >> 1, then we would expect Ps(v, b) = 1. If Ns(v, b) < 1,

then we may assume that N (v, b) is either 0 or 1. 'hen

P (v, b) = P(N (v, b) = 1) = N (v, b). Thus we use the approximation

* 1 N (v, b) > 1
Ps(v, b) = ' (C-12)

N s(v, b), Ns(v, b) < I

-38- •



Ps(V, b)
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FIGURE C.2. Ps(v, b) AS A FUNCTION OF c.
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This approximation is reasonably good. We first find b such that

N (v, b) = 1:

7b v
()2 =1

b = 52 v (C-13)
9- og 2 7

We then have

1 b <5.2v
Ps(v, b) 7 7b-5.- (C-14)

b > 5.2v

This function is very similar to the one obtained by the first

analytic method and again the region over which Ps(v, b) drops effec-

tively from 1 to 0 is limited again to a small range and is independent

of v and b. Figure C.3 illustrates the relationship between P5 and c
(where c = b - 5.2v

The dotted line of Fig. C.3 shows Ps as found by Method 1 for

the same values of c. As can be seen, for c > 1 the curves are vir-

tually identical. There is, however, a 5% difference between the con-

stants relating v and b in the two approximations. Nevertheless, the

two analyses corroborate eath other and give rise to the same analytical

behavior of Ps; i.e., v and b are linearly related at the point where Ps

drops and P5 decays exponentially.

C .4. Simulation

Finally, in order to compare the accuracy of the two analytic

methods, we performed a simulation to measure Ps(v, b) directly. In

the simulation, clauses were generated at random with replacement, all
* '0

clauses being equally likely. Each time a clause was generated, the

truth values it eliminated were eliminated. This procedure was con-
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tinued until no truth values remained. For each value of v, the value

of b at which the last remaining truth value was eliminated was re-

corded and became a sample, b. An estimate of Ps(v, b) is then

formed by

(# of b. > b)
P s(v, b) (total # of b) (C-15)

Figure C.4 gives the results of this simulation for v = 10, 20 and 30.

As can be seen, the true value of P (v, b) lies between the N values

predicted by the two analytic methods and is somewhat closer to that

predicted by the second method. The important property of rapid* 4
decay from 1 to 0 is borne out.

*I S
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ACTIVITIES

The following four Ph.D. theses were successfully defended.

Paul Chu, A Dynamic Routing Scheme in Packet Switched Networks
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David Tsao, Comparison of Switching Techniques

William Chuang, Probabilistic Analysis of Algorithms.

Our paper on A Technique for Adaptive Routing in Networks

appeared in the April 1981 issue of IEEE Transactions on Communica-

tions, Special Issue on Congestion Control in Computer Networks.

A paper on Generalized Augmenting Paths was presented at the

10th IFIPS Conference on System Modeling and Optimization in New

York, August 1981. The paper will appear in the proceedings to be

published later.

A paper on a Simulation of a Dynamic Routing Scheme will be

presented at the IEEE NTC '81 Conference in New Orleans, November

1981.

A talk on Dynamic Routing was given at Carleton University,

Toronto, Canada at an all-day seminar on Networks co-sponsored by

Carleton University, IEEE Toronto Chapter, and Bell Northern Re-

search.
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APPENDIX

A Shortest Path Algorithm for the Solution of the Simple Knapsack

Problem and Extensions.

A paper to be submitted for publication.
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A SHORTEST PATH ALGORITHM FOR THE SOLUTION

OF THE SIMPLE KNAPSACK PROBLEM AND EXTENSIONS

Aaron Kershenbaum*

*e
Department of Electrical Engineering and Computer Science

Polytechnic Institute of New York

Brooklyn, NY 11201

ABSTRACT

rO We consider several versions of the Knapsack Problem and show

that they can be solved using a shortest path algorithm requiring both

storage and running time which are polynomial functions only of the

r number of types of object and the size (weight) of a single object.

This is a significant improvement over previous algorithms for the

solution of the Knapsack Problem using shortest paths, which typically

require storage and runtime which are functions of the total knapsack

size.

I. INTRODUCTION

The Knapsack Problem, which is interesting in its own right, has

[3]also received much attention recently as a means of solving integer

programming problems via a relaxation technique using group theory.

Formally, the Knapsack Problem can be stated as:

M
Maximize z = I pixi

S i=l "O=

*This work was partially supported by NSF under Grant ENG 7908120

and by U.S. Army CECOM under Contract DAAK-80-80-K-0579.
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M

subject to 7 - wix. W
1 1

A0
x i > 0 for i =1,2 .1M

x. integer

Thus, we are given M types of object with weight wi and profitability

pi per object of type i. We are required to maximize the total profit

subject to a constraint that the sum of the weights of the objects

selected equals W. In the simple (unbounded) version of the problem

there is no restriction on the number of objects of each type which

may be included in the solution.

Sometimes an inequality constraint is used in place of the equal-

ity constraint, i.e., one seeks objects whose aggregate weight does

not exceed W. Such a problem can be transformed into a problem

with an inequality constraint by including an additional object with

unit weight and zero profitability. Here we will concentrate primarily

on problems with equality constraints.

We assume that W and the wi are non-negative integers (or,

more generally, that they are commensurate) and that the pi are

non-negative.

Previous approaches to the solution of this problem include those

reported by Horowitz and Sahni [ 1 ] using dynamic programming and

implicit enumeration. These approaches have been found to be effec-

tive for a wide range of problems but have exhi'-ited excessive run-

times for problems with a large number of aeariy equally valuable (in

terms of cost per unit weight) objects. Also, their worst case run-

ning times are exponential in the number of object types. Denardo
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and Fo[2
and Fox have developed an approach which overcomes these ob-

jections by solving the problem as a shortest path problem in a net-

work with W nodes and W x M arcs. Thus, their approach requires

storage proportional to W and runtime proportional to W x M. If W

and M are sufficiently small, their approach is extremely attractive.

If W is large, however, the storage, and to a lesser extent the run-

time, become prohibitive.

Denardo and Fox present their algorithm in the context of using

a Knapsack Problem as an integer programming relaxation. In such

cases, W is generally of the same order as the wi. We extend their

approach to the case where W is very large but the individual wi are

not, and exploit the underlying cyclic group structure of the problem

to develop an algorithm with both runtime and storage requirements a

function only of the weight of a single object and the number of

object types. Garfinkle and Nemhauser [ 4 ] point out the relationship

to the group structure but do not discuss application of the structure

to develop an algorithm as efficient as the one presented here.

II. BASIC PROCEDURE

For the sake of clarity, we begin by describing the basic proce- ..-0

dure and justifying it. In later sections, extensions and refinements

of this procedure are considered.

We begin by defining a network K = (N,A,L) corresponding to 0

the Knapsack Problem (KP). The node set, N, contains W + 1 nodes

numbered 0 through W corresponding to the aggregate weight of the

objects selected thus far. At each node, i, there are outgoing arcs
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corresponding to feasible objects which may be selected to augment a

partial solution with weight i. Thus, at node i there will be arcs

(i, i + WK) for all K such that i + wk < W. The length of an arc

corresponding to an object of type K is Pk" We thus have:

N = {0,1,... W}

A = {(i, i + wk)! i = 0,1,...W, for all k such that i + wk < W}

L + [Ili ! (i,J)eA, where I - Pk for arcs corresponding to type

k objects}

The network thus contains approximately ?VIW arcs. We will assume

that wk - wk for k, k 2 as if two types of objects have the same
"1 2

weight the one with the smaller profit can be ignored. We also assume

wk > 0 and Pk > 0 for all k. We will refer to arcs corresponding to

a type k object simply as type k arcs. Figure 1 illustrates part of a

network corresponding to a KP with 4 types of object, described in

the table accompanying Figure 1. For the sake of clarity, only nodes

0 through 7 and arcs from nodes 0 and 1 are shown in Figure 1.

Paths from node 0 to node W in such networks correspond to

solutions of the associated KP. The length of a path, defined as the

sum of the lengths of the arcs in the path, is the total profit of the

solution. Thus, the longest path corresponds to the optimal solu-

tions. Note that, by the assumption that wk > 0 for all k, the net-

work is acyclic and so the problem of finding the longest path from 0

to W is solvable using Bellman's shortest path algorithm suitably modi-

fied to find longest paths. Defining d. to be the length of the cur-

rent estimate of the longest path from node 0 to node i, this amounts

simply to:

that wkl Wk for KI K2 as

1 2
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Algorithm 1

Step O: do 0

Step i: For i = to W

For all j such that (i,j)eA

{dj = max (d. d. + Ij)

One can also keep track of the solution itself by setting a. - i when-

ever the value of d. is updated. At the end of the algorithm one can

trace the path back from node W to node 0 using the a. We refer to

d. as the label on node j and to a. as the predecessor of node j.

Step 1 is known as a scan of each node, i.

Algorithm 1 is the simplest possible shortest path algorithm.

The nodes are scanned in numerical order and each node is scanned

only once. The algorithm has a running time on the order of MW

operations and a storage requirement on the order of W. If W is

very large, the approach becomes unattractive. The approach des-

cribed below avoids this problem by solving the problem using a

network which is, in general, much smaller. The key to reducing the

size of the network is embodied in the following lemmas. Define

= max (wk) and w* = w. such that 2! = max k. Thus . is the
k J w* kwkk w

weight of the "heaviest" type of object and w* is the weight of the

"best" type of object.

The proofs of some of the lemmas rely upon elementary proper-

ties of cyclic groups. The interested reader is referred to [6] for

more details.
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Lemma 1: An optimal KP solution exists containing no set of

objects whose aggregate weight is a multiple of w*.

Pruof: Given an optimal KP solution containing a set of objects

of aggregate weight nw*, we can replace these objects by n "best"

objects without altering the total weight. The net change is profit,

Ap is defined by:

Ap :np* - I pj

By the definition of p*, each term of the sum is non-negative

and hence Ap > 0. We can thus replace the set without destroying

optimality and the lemma is proven.

The terms in the above sum can be interpreted as the amount of

profit "wasted" by using a type j object instead of a best object. We

can in fact redefine the arc lengths in the network corresponding to

a given KP to be precisely these quantities. The optimal KP solution

then corresponds to the shortest path from 0 to W. This can be seen

to be true by observing that the above transformation of the arc

lengths affects the lengths of all paths from 0 to W in precisely the

same way. If the length of a 0 to W path in the original network was

W*p the length of the same path in the new network is p* - p

Thus the relative length of all 0 to W paths are reversed. Alterna-

tively, one can observe that the optimal path is the one which wastes

the least profit. In the sequel, we use this form of the length func-

tion as it will allow us to improve the efficiency of the algorithm. We

* refer to the network using this length function as K1 .
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In Figure 1, the new lengths of arcs of types 1 through 4 are

1,2,0, and 2, respectively. Note that type 3 arcs are best and that
0

best arcs have 0 length. All arcs have non-negative length. If the

best type of arc is not unique (e.g. if w2 = 9 in the above example),

it is possible for the length of more than one type of arc to be 0.

To avoid confusion, we assume that the best type of object is unique.

The extension of the algorithms to this case is straight forward.

Lemma 2: An optimal solution exists containing no more than

w* - 1 non-best objects.

Proof: Any set of w* or more objects must contain a subset of

weight nw* for some n > 0. To see this, consider a set of w* ob-

jects, il,i 2 ,...iw,. From the sums

i
S. = ( I Wi ) modulo W*

k=1 ' k

i
If Sj = 0 then I Wi = nw*.

k=1 k

If Sj = S for 2 > j then W. = nw*.
k=j k

But there are w* Si s and only w* - 1 nonzero values of modulo

w*. Hence, either S. = 0 or S = S for some £ and the set contains

a subset of weight nw*. From the proof of Lemma 1 we see that we

can replace any such subset by n best elements without decreasing

the profit. Thus, we need only consider sets containing w* - 1 or

fewer non-best elements together with zero or more best elements.

An optimal solution can always be obtained i- this way.

But since all elements have weight no greater than %, the ag-

gregate weight of the non-best elements in any such optimal solution

... --
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will not exceed V*(w* - 1). If W > Vw*, we need not consider W

explicitly as a constraint. We need simply apply the above algorithm

to get d. for j < vw*, and then complete the solution by adding the

appropriate number of best objects.

Indeed, we are only interested in the weight modulo w* of a

partial solution since any two solutions whose weights differ by a

multiple of w* differ only by one or more best objects. We thus

have:

Lemma 3: If W > 'iw*, the. optimal KP solution can be found by

adding zero or more best objects to the set of objects defining the

shortest path in the network formed by merging all nodes with the

same weight modulo w* as described above.

Proof: Consider the original network before the nodes were

merged. Consider the 0 to W path corresponding to an optimal solu-

tion. By Lemma 1, we may assume this path contains no set of arcs

(correspond to objects) of weight nw* except for best arcs. Since

the network contains paths cc,-responding to picking these objects in

all possible orders, we may assume that the path under consideration

has all the best arcs at the end. Consider only the initial subpath

corresponding to the non-best arcs.

Now, consider what the transformation does to this initial sub-

path. All the nodes in this path have different weights modulo w*.

Thus the transformation changes this optimal 0 to W path in K1 to a 0

to W I path in the network with merged nodes, where W' = W modulo

w*. Note that other paths, including some optimal ones, become

complex paths containing cycles because they contain subsets whose

aggregate weights are a multiple of w*. The path we are focusing on
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however remains a simple path and can thus be found using an ordi-

nary shortest path algorithm.

No new paths are created by the transformation. Thus, an

optimal KP solution can be obtained by appending 0 or more best arcs

to the shortest 0 to W' path in the new network, and the lemma is

proven.

It is thus possible to define a new network

K 2 = (N,A,L):

N {0,1,...w*-l

A = {(i,j) I j = (i + wk) modulo w* for some K}

wk

L [2 {.I(i,j)e A, 2 k *-~ fori - P* "Pkfr

k defining (i,j)}

This network has only w* nodes instead of W. Furthermore, we

note that if (Wk = Wk2) modulo w*, then type k, and type k 2 arcs
k1 k2

are parallel and the arc corresponding to the object with the smaller

9. can be ignored. Thus, there is at most 1 outgoing arc from each

node to each other. The total number of arcs is thus at most

w*(w*- 1). We have thus removed dependency on both M and W and

have a procedure whose running time and storage are a polynomials ZO

only in w*.
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ALGORITHM DESCRIPTION

We now describe the actual procedure in more detail and analyze

its storage and runtime.

-57-



The following is the essence of the procedure:

Step 0: (Initialization)

d 0
Jd j = j = , . . w * - I

where d. is the current estimate of the length of the shortest path

from 0 to j.

Step 1: Find i, the best node to scan next. This is discussed in

detail below.

Step 2: (Scan node i)

For k = 2, ... M

Let j = (i + wk) modulo w*

If d. > d i + ij then d. = di + ij and PRj = k

where 9.. is the length of an arc corresponding to a type k object

(2 ij = wk(P*/W* Pk ) as defined above) and PRj records the type of

the arc used to label node j and hence keep track of the optimal

solution.

Step 3: Return to Step 1 if any nodes remain to be scanned; other-

wise stop.

It is clear that the storage required for this procedure is linear

in w* + M. If Step 1 is sufficiently simple and each node is only .*

scanned once, the procedure's runtime will be dominated by Step 2

and will be proportional to Mw*. This is in fact the case, as we will

see.

A node, j, must be scanned if its label, d. is improved (re-
',

duced) as it may then improve the labels of other nodes. If we are

to ensure that each node is scanned at most once, we must defer
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scanning it until its label cannot be improved. When all arc lengths

are positive, as they are here, this objective is achieved by scanning

the nodes in ascending order of d. This is Dijkstra's well known

shortest path algorithm.

In the general case, Dijkstra's algorithm requires that in Step 1

we find the as yet unscanned node with the smallest label. If this

were done naively, it would require an examination of w* labels and

the overall procedure would require (w*) 2 + Mw* operations. In this

case, however, we can implement Step 1 carefully and do much bet-

ter.

We form "buckets" of nodes to be scanned and place nodes to be

scanned together in the same bucket if they have similar labels. If

the width of the buckets is q, then we place a node with label d,

where (k-i) < d < kq in the kth bucket. We then simply work our

way through the buckets in ascending order of bucket number scan-

ning the nodes in each bucket in arbitrary order. Thus, there is no

explicit search in Step 1. If the width of the bucket is no greater

than the length of the shortest arc in the graph, then any node

labeled by the node currently being scanned will reside in a higher

numbered bucket and hence, each node will be scanned at most once.

The only problem with this procedure, which is well known, is

that the number of buckets itself may become very large, in particu-

*PO lar much larger than the number of nodes, if the longest arc is many

times greater than the shortest. In this case, a great deal of storage

and running time may be wasted in dealing with empty buckets. We

now show that in this case fewer than w* buckets are required in all

cases.
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We begin by reindexing the arcs out of each node corresponding

to the M - 1 remaining types of object in increasing order of length.

(Recall that the arc corresponding to the best type of object was re-

moved from explicit consideration.) Thus, L1, is the length of the

arc which corresponds to the second best type of object, etc. The

wi and pi are reindexed correspondingly. We will refer to arcs of

length Li, weight w i, and profit pi after this reindexing as arcs of

type i (or as arcs corresponding to objects of type i). For sim-

plicity, we will assume L. L. for i j although the procedure does

not require this.

Consider the case where w* is relatively prime to wl. By the
-I -0

definition above, arcs of length L1 are the shortest arcs in the

graph. Since w, and w* are relatively prime, a path containing at

most w* - 1 arcs comprised entirely of arcs of type 1 exists from 0 to

each other node. Thus, we know that no node need have a label

greater than Ll(w* - 1). So, w* - 1 buckets of width L, suffice

since the shortest path will be no longer than the aforementioned one.

In the case where w* and w, are not relatively prime, the above

path will loop back to node 0 before reaching many of the other

nodes. In this case, the following preliminary computation is carried

out before setting up the buckets:

r = w*

For j = 1, M-1

gi = r/GCD(r,w.)

r = GCD(r,w.)

where GCD(i,j) is the greatest common divisor of the integers i and j

and can be found using Euclid's Algorithm, whose running time is

bounded by the following Lemma:
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Lemma 4: Euclid's Algorithm has a worst case running time of

order log N when applied to find the GCD of N and M, for N > M.

Proof: For N > M, Euclid's Algorithm replaces a problem on N

and M by one one M and N - qM. The worst case for this, i.e., the

one which converges most slowly, is when q = 1 at all stages. This

results in a Fibonacci sequence. It is well known [1] that the Kth

Fibonacci number, FK is given by:

FK = +

4- 2

Thus, the runtime of the algorithm is of order K for N of order

FK' i.e., K is of order log N.

We observe that, corresponding to the paths comprised entirely

of type 1 arcs above, there is now a tree rooted at 0, spanning all

the nodes, and containing paths with at most gj - 1 arcs of length

L j. An illustration of such a tree is given in Figure 4. In this case

only nodes 0i8, and 4 can be reached using only arcs of type 1

before the path cycles back to node 0. The number of nodes so

reachable is g, (three in this case). The original set of w* nodes is

partitioned into g, parts which are then each partitioned into g 2

smaller parts corresponding to the nodes which are now reachable via

arcs of type 2. The partitioning continues until all nodes are

reached. The above can be proven rigorously in the general case

using the properties of cyclic groups.

We now define buckets of variable width corresponding to the

longest path in the tree defined above. Thus, there are g, - 1
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buckets of width 1, followed by g2 - 1 buckets of width 12, etc. A

total of B = (gi - 1) buckets is required. Since the product of the

gi's is w*, B < w*.

We have shown that less than w* buckets are required. We now

show that no node is scanned more than once. To do so, we show

that the width of each bucket is no greater than the length of the

shortest arc still permitted in a path.

0 2

06 2

2 2

10

Figure 4: A spanning tree bounding the lengths of shortest paths -O

Note that the paths from 0 to j correspond to ordered selections

of objects of aggregate weight j; i.e., there are distinct paths cor- 0

responding to the selection of the same objects in different orders.

We can, and should, consider only one path corresponding to each

* distinct collection of objects. This is easily done by keeping track of S

the last type of arc in the path (which we are doing with the variable
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PR.) and only considering arcs with the same or higher index (object

type). Thus, we will find solutions corresponding to a selection of
0

objects in non-decreasing order of type.

Now, consider a node in bucket i of width w. This node was

either reached via a path in the tree considered above or via an arc

whose length is greater than that of any in that tree. In latter case,

the length of the smallest arc under consideration exceeds the width

of any bucket. In the former case, since we are considering arcs in

increasing order of length, again a node can only enter a bucket via

an arc at least as long as the width of the bucket.

Extensions

If W < w*4 then it is possible for w. to be equal to w. and for

objects i and j not to dominate one another. In particular, if w. > w.

and P.i < £ neither i nor j may dominate. This is because the con-

straint on W may prohibit the use of a sufficient number of objects

with the smaller length. As an example of this, consider a problem .

with W = 24 and (Wi, Pi) of (5,50), (6,58), (11,109), (1,0). Here,

the 9.i are 0,2,1, and 10, and w 2 = w3 modulo 5. Neither object 2

nor object 3 dominates the other, however. In fact, the optimal

solution is 4 type-2 objects in this case. For W =21 or W = 22,

however, type-3 objects would be used in the optimal solution.

For W = 23, both type-2 and type-3 objects would be used. Lemma

3 can thus not be extended directly to the case whose W < w*v.

Thus, it is not possible to make the final reduction to a network

with w* nodes in this case. However, when the individual wi are

small, which is the principal case of interest here, w*N will be small

as well. The above algorithm can then still be dpplied effectively to
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the network with W nodes. Alternatively, one can view the following

procedure as working on the reduced graph with w* nodes but allow-

ing multiple labels on each node. We adopt this latter point of view

in describing the modified procedure below.

A label on a node, i, is now a couple (di ci) where di is the

amount of wasted profit to get to node i, i = 1,2,... w*-1, and c i is

the cycle number of this label. The c i are defined by the relation

i = j - w*c i

where j is the node in the network K1 (with W nodes) which would

have received the same label. A node i in K2 can thus have several

labels corresponding to different c i , but for any two labels (d i ,c i )

and (di ',c) on the same node i,
d.> d.i  , c. < c i

since as we noted above the only reason for considering a larger d.

would be to obtain a smaller c. Similarly, for any pair of objects

with weights having the same residue modulo w* the object with the

larger weight must have the smaller length.

There are several limitations on the maximum number of objects

of any given type. In particular, mi , the maximum number objects of

type i, is bounded by

.1 min W1 w*
mI < mI L wi ' GCD(w*,ri)

where r i is the residue of wi modulo W*. The first term on the right

hand side follows from the fact that any larger number of type i

objects have weight greater than W. The second term follows by the

some reasoning is Lemma 2.
* ,4
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Proceeding along the lines similar to those in [3] we create

(log 2 Mi) + 1 objects corresponding to 1,2,4,8,... and 2 b objects of

type i, where b is largest power of 2 that is less than M. We thus

now have defined a new problem with at most M log 2 W objects. At

most one object of each type is permitted in the solution. e

Proceeding along lines similar to those in [3], we can create

(log 2 Mi) + 1 objects corresponding to 1,2,4,8.. 2 b objects of type

i, where b is the largest power of 2 that is less than M. We then

have a problem with at most M1 = Mlog 2 (w*) objects where at most

one object of each type need be considered. Thus, we could create M 1

buckets and proceed with the algorithm as above.

One can refine this procedure by eliminating dominated objects

from consideration. In particular, if two objects i and j, have the
same residue modulo w*, and w. > w. and 2. < 2. then object j may be -*

eliminated from further consideration. One must be careful, however,

not to allow one copy of an object to eliminate another copy of the

same object. -*

For example suppose there were initially 4 types of object with

(WiPi) equal to (10,20), (3,5), (7,4) and (1,0) W = 10 and W < Nw*,

* respectively. If W = 37 we must consider the modified procedure. -.

We thus create objects with (Wi,P i ) equal to (6,10), (12,20), and

(6,10) corresponding to 2,4, and 2 objects of type 2. These three

*e new objects together with the original object of type 2 can be used to S

select anywhere from 0 to 9 copies of the type 2 object. The first

new object is identical to the third and would dominate it unless we

* specifically prohibited this. ZVI
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If the Wi and Pi are drawn independently from uniform distribu-

tions, this latter refinement will reduce the average number of objects

to no more than w*2n(M) objects and buckets as we see from Lemma

5.

Lemma 5: There will be on the average on the order of no more than:

"nM log 2 (W*)i
W* 9n W* ]J

w* I
objects left undominated after dominated objects are removed in the

above procedure.

Proof: As observed above, there are approximately Mlog 2 (W*) or

fewer objects before dominance is checked. Suppdse these objects

divide evenly into residue classes. There would then be Mlog 2 (w*)/w*

objects in each residue class.

An object can be dominated by any other object in the same

class. If the objects are ordered in increasing order of Ri' an object

will be dominated unless its wi is less than the wi of all objects pre-

ceding it on the list since the weights are uniformly distributed, the -
t.h 1 ,

Kth item in the list will be undominated with probability K Thus,

given a list of length L the expected number of undominated elements

remaining on the list is

L

j=1 2n(L)

The result foilows directly by substituting for L. If the residue

classes do not all contain the same number of elements, the result is

still true since we observe that the quantity

n(L1) + n(L 2 ) for L, + L2 ; 2L .
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is maximized for L, = L2 = L, that is, equal sized residue classes

yield the maximum number of objects.

Thus, even for W < w'W, we have a number of buckets polynomial

in w*, not W. The running time is thus at worst of orderWw* < (w*) 2 %.

It is possible to extend the procedure still further to take into

account restrictions on the number of permissible objects of each

type, for some or all of the objects. First, if one is given an a

priori restriction, Ui , on the number of objects of type i, one need

only set

Mi = Min (Mi, Ui)

where Mi is the maximum number of objects of type is permitted and

the Mi on the right hand side is computed as above. If the a priori

maximum permissible number of best objects is less than W/w* than a

fictitious best object with w* = W + 1 must be added to the problem.

This maintains the validity of the procedure but may reduce its

efficiency considerably if the original w* was much smaller than W.

-a

CONCLUSIONS

We have presented an algorithm for the solution of the simple

(unbounded) Knapsack Problem whose running time and storage are

functions only of the size of the "best" object weight, W* in the case

where the overall weight constraint is sufficiently large. In the cases

where the overall weight constraint is smaller or where restrictions

exist on the number of objects of a given type, we present an exten-

sion of this procedure which in practice is often very efficient and

whose worst case running time is no greater than (w*) 2% where V is S

the weightiest object.
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